Clinical Patterns of Hair Loss in Men

Is Dihydrotestosterone the Only Culprit?
  • Natalie Kash
    Affiliations
    Department of Dermatology, Kansas City University-Graduate Medical Education Consortium/Advanced Dermatology and Cosmetic Surgery Orlando Dermatology Program, 260 Lookout Place, Suite 103, Maitland, FL 32751, USA
    Search for articles by this author
  • Matt Leavitt
    Correspondence
    Corresponding author. 260 Lookout Place, Suite 103, Maitland, FL 32751.
    Affiliations
    Department of Dermatology, Kansas City University-Graduate Medical Education Consortium/Advanced Dermatology and Cosmetic Surgery Orlando Dermatology Program, 260 Lookout Place, Suite 103, Maitland, FL 32751, USA

    Advanced Dermatology and Cosmetic Surgery, Maitland, FL, USA

    University of Central Florida, College of Medicine, Orlando, FL, USA

    Bosley Medical Group, Maitland, FL, USA
    Search for articles by this author
  • Author Footnotes
    1 Present address: 1500 East Medical Center Drive, Ann Arbor, MI 48103, USA.
    Adam Leavitt
    Footnotes
    1 Present address: 1500 East Medical Center Drive, Ann Arbor, MI 48103, USA.
    Affiliations
    Department of Dermatology, The University of Michigan, Ann Arbor, MI, USA
    Search for articles by this author
  • Author Footnotes
    1 Present address: 1500 East Medical Center Drive, Ann Arbor, MI 48103, USA.
    Spencer D. Hawkins
    Footnotes
    1 Present address: 1500 East Medical Center Drive, Ann Arbor, MI 48103, USA.
    Affiliations
    Department of Dermatology, The University of Michigan, Ann Arbor, MI, USA
    Search for articles by this author
  • Rahil B. Roopani
    Affiliations
    Hair Restoration Surgery Program, Leavitt Medical Associates, 260 Lookout Place, Suite 103, Maitland, FL 32751, USA
    Search for articles by this author
  • Author Footnotes
    1 Present address: 1500 East Medical Center Drive, Ann Arbor, MI 48103, USA.

      Keywords

      To read this article in full you will need to make a payment
      Purchase one-time access
      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.
      Content published before 2002 is available via pay-per-view purchase only.
      Subscribe to Dermatologic Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hamanaka R.B.
        • Glasauer A.
        • Hoover P.
        • et al.
        Mitochondrial reactive oxygen species promote epidermal differentiation and hair follicle development.
        Sci Signal. 2013; 6: ra8
        • Kloepper J.E.
        • Baris O.R.
        • Reuter K.
        • et al.
        Mitochondrial function in murine skin epithelium is crucial for hair follicle morphogenesis and epithelial-mesenchymal interactions.
        J Invest Dermatol. 2015; 135: 679-689
        • Zhao J.
        • Li H.
        • Zhou R.
        • et al.
        Foxp1 regulates the proliferation of hair follicle stem cells in response to oxidative stress during hair cycling.
        PLoS One. 2015; 10: e0131674
        • Trueb R.M.
        The impact of oxidative stress on hair.
        Int J Cosmet Sci. 2015; 37: 25-30
        • Naito A.
        • Midorikawa T.
        • Yoshino T.
        • et al.
        Lipid peroxides induce early onset of catagen phase in murine hair cycles.
        Int J Mol Med. 2008; 22: 725-729
        • Upton J.H.
        • Hannen R.F.
        • Bahta A.W.
        • et al.
        Oxidative stress-associated senescence in dermal papilla cells of men with androgenetic alopecia.
        J Invest Dermatol. 2015; 135: 1244-1252
        • Bahta A.W.
        • Farjo N.
        • Farjo B.
        • et al.
        Premature senescence of balding dermal papilla cells in vitro is associated with p16(INK4a) expression.
        J Invest Dermatol. 2008; 128: 1088-1094
        • Premanand A.
        • Rajkumari B.R.
        In silico analysis of gene expression data from bald frontal and haired occipital scalp to identify candidate genes in male androgenetic alopecia.
        Arch Dermatol Res. 2019; 311: 815-824
        • Haslam I.S.
        • Jadkauskaite L.
        • Szabo I.L.
        • et al.
        Oxidative damage control in a human (mini-) organ: Nrf2 activation protects against oxidative stress-induced hair growth inhibition.
        J Invest Dermatol. 2017; 137: 295-304
        • Chai M.
        • Jiang M.
        • Vergnes L.
        • et al.
        Stimulation of hair growth by small molecules that activate autophagy.
        Cell Rep. 2019; 27: 3413-3421.e3
        • Sasaki M.
        • Shinozaki S.
        • Shimokado K.
        Sulforaphane promotes murine hair growth by accelerating the degradation of dihydrotestosterone.
        Biochem Biophys Res Commun. 2016; 472: 250-254
        • Prie B.E.
        • Iosif L.
        • Tivig I.
        • et al.
        Oxidative stress in androgenetic alopecia.
        J Med Life. 2016; 9: 79-83
        • Kaya Erdogan H.
        • Bulur I.
        • Kocaturk E.
        • et al.
        The role of oxidative stress in early-onset androgenetic alopecia.
        J Cosmet Dermatol. 2017; 16: 527-530
        • Naziroglu M.
        • Kokcam I.
        Antioxidants and lipid peroxidation status in the blood of patients with alopecia.
        Cell Biochem Funct. 2000; 18: 169-173
        • Kutlu O.
        Dexpanthenol may be a novel treatment for male androgenetic alopecia: analysis of nine cases.
        Dermatol Ther. 2020; 33: e13381
        • Anzai A.
        • Pereira A.F.
        • Malaquias K.R.
        • et al.
        Efficacy and safety of a new formulation kit (shampoo + lotion) containing anti-inflammatory and antioxidant agents to treat hair loss.
        Dermatol Ther. 2020; 33: e13293
        • Beoy L.A.
        • Woei W.J.
        • Hay Y.K.
        Effects of tocotrienol supplementation on hair growth in human volunteers.
        Trop Life Sci Res. 2010; 21: 91-99
        • Tenore G.C.
        • Caruso D.
        • Buonomo G.
        • et al.
        Annurca apple nutraceutical formulation enhances keratin expression in a human model of skin and promotes hair growth and tropism in a randomized clinical trial.
        J Med Food. 2018; 21: 90-103
        • Hatem S.
        • Nasr M.
        • Moftah N.H.
        • et al.
        Clinical cosmeceutical repurposing of melatonin in androgenic alopecia using nanostructured lipid carriers prepared with antioxidant oils.
        Expert Opin Drug Deliv. 2018; 15: 927-935
        • Hatem S.
        • Nasr M.
        • Moftah N.H.
        • et al.
        Melatonin vitamin C-based nanovesicles for treatment of androgenic alopecia: design, characterization and clinical appraisal.
        Eur J Pharm Sci. 2018; 122: 246-253
        • Pekmezci E.
        • Dundar C.
        • Turkoglu M.
        A proprietary herbal extract against hair loss in androgenetic alopecia and telogen effluvium: a placebo-controlled, single-blind, clinical-instrumental study.
        Acta Dermatovenerol Alp Pannonica Adriat. 2018; 27: 51-57
        • Ablon G.
        • Kogan S.
        A six-month, randomized, double-blind, placebo-controlled study evaluating the safety and efficacy of a nutraceutical supplement for promoting hair growth in women with self-perceived thinning hair.
        J Drugs Dermatol. 2018; 17: 558-565
        • Nichols A.J.
        • Hughes O.B.
        • Canazza A.
        • et al.
        An open-label evaluator blinded study of the efficacy and safety of a new nutritional supplement in androgenetic alopecia: a pilot study.
        J Clin Aesthet Dermatol. 2017; 10: 52-56
        • Le Floc'h C.
        • Cheniti A.
        • Connetable S.
        • et al.
        Effect of a nutritional supplement on hair loss in women.
        J Cosmet Dermatol. 2015; 14: 76-82
        • Fischer T.W.
        • Trueb R.M.
        • Hanggi G.
        • et al.
        Topical melatonin for treatment of androgenetic alopecia.
        Int J Trichology. 2012; 4: 236-245
        • Fischer T.W.
        • Burmeister G.
        • Schmidt H.W.
        • et al.
        Melatonin increases anagen hair rate in women with androgenetic alopecia or diffuse alopecia: results of a pilot randomized controlled trial.
        Br J Dermatol. 2004; 150: 341-345
        • Takahashi T.
        • Kamimura A.
        • Yokoo Y.
        • et al.
        The first clinical trial of topical application of procyanidin B-2 to investigate its potential as a hair growing agent.
        Phytother Res. 2001; 15: 331-336
        • Takahashi T.
        • Kamimura A.
        • Kagoura M.
        • et al.
        Investigation of the topical application of procyanidin oligomers from apples to identify their potential use as a hair-growing agent.
        J Cosmet Dermatol. 2005; 4: 245-249
        • Mahe Y.F.
        • Michelet J.F.
        • Billoni N.
        • et al.
        Androgenetic alopecia and microinflammation.
        Int J Dermatol. 2000; 39: 576-584
        • Trueb R.M.
        Is androgenetic alopecia a photoaggravated dermatosis?.
        Dermatology. 2003; 207: 343-348
        • Lu Z.
        • Fischer T.W.
        • Hasse S.
        • et al.
        Profiling the response of human hair follicles to ultraviolet radiation.
        J Invest Dermatol. 2009; 129: 1790-1804
        • Trueb R.M.
        Oxidative stress in ageing of hair.
        Int J Trichology. 2009; 1: 6-14
        • Seo J.A.
        • Bae I.H.
        • Jang W.H.
        • et al.
        Hydrogen peroxide and monoethanolamine are the key causative ingredients for hair dye-induced dermatitis and hair loss.
        J Dermatol Sci. 2012; 66: 12-19
        • Young J.W.
        • Conte E.T.
        • Leavitt M.L.
        • et al.
        Cutaneous immunopathology of androgenetic alopecia.
        J Am Osteopath Assoc. 1991; 91: 765-771
        • Jaworsky C.
        • Kligman A.M.
        • Murphy G.F.
        Characterization of inflammatory infiltrates in male pattern alopecia: implications for pathogenesis.
        Br J Dermatol. 1992; 127: 239-246
        • Sueki H.
        • Stoudemayer T.
        • Kligman A.M.
        • et al.
        Quantitative and ultrastructural analysis of inflammatory infiltrates in male pattern alopecia.
        Acta Derm Venereol. 1999; 79: 347-350
        • El-Domyati M.
        • Attia S.
        • Saleh F.
        • et al.
        Androgenetic alopecia in males: a histopathological and ultrastructural study.
        J Cosmet Dermatol. 2009; 8: 83-91
        • Magro C.M.
        • Rossi A.
        • Poe J.
        • et al.
        The role of inflammation and immunity in the pathogenesis of androgenetic alopecia.
        J Drugs Dermatol. 2011; 10: 1404-1411
        • Trueb R.M.
        • Rezende H.D.
        • Dias M.
        A comment on the science of hair aging.
        Int J Trichology. 2018; 10: 245-254
        • Breitkopf T.
        • Leung G.
        • Yu M.
        • et al.
        The basic science of hair biology: what are the causal mechanisms for the disordered hair follicle?.
        Dermatol Clin. 2013; 31: 1-19
        • Deloche C.
        • de Lacharriere O.
        • Misciali C.
        • et al.
        Histological features of peripilar signs associated with androgenetic alopecia.
        Arch Dermatol Res. 2004; 295: 422-428
        • Ramos P.M.
        • Brianezi G.
        • Martins A.C.
        • et al.
        Apoptosis in follicles of individuals with female pattern hair loss is associated with perifollicular microinflammation.
        Int J Cosmet Sci. 2016; 38: 651-654
        • Trueb R.M.
        Molecular mechanisms of androgenetic alopecia.
        Exp Gerontol. 2002; 37: 981-990
        • Inui S.
        • Fukuzato Y.
        • Nakajima T.
        • et al.
        Identification of androgen-inducible TGF-beta1 derived from dermal papilla cells as a key mediator in androgenetic alopecia.
        J Investig Dermatol Symp Proc. 2003; 8: 69-71
        • Leiros G.J.
        • Ceruti J.M.
        • Castellanos M.L.
        • et al.
        Androgens modify Wnt agonists/antagonists expression balance in dermal papilla cells preventing hair follicle stem cell differentiation in androgenetic alopecia.
        Mol Cell Endocrinol. 2017; 439: 26-34
        • Sadick N.S.
        • Callender V.D.
        • Kircik L.H.
        • et al.
        New insight into the pathophysiology of hair loss trigger a paradigm shift in the treatment approach.
        J Drugs Dermatol. 2017; 16: s135-s140
        • Nicolaou A.
        Eicosanoids in skin inflammation.
        Prostaglandins Leukot Essent Fatty Acids. 2013; 88: 131-138
        • Pruzanski W.
        • Vadas P.
        Phospholipase A2--a mediator between proximal and distal effectors of inflammation.
        Immunol Today. 1991; 12: 143-146
        • Dennis E.A.
        Diversity of group types, regulation, and function of phospholipase A2.
        J Biol Chem. 1994; 269: 13057-13060
        • Maccarrone M.
        • Putti S.
        • Finazzi Agro A.
        Nitric oxide donors activate the cyclo-oxygenase and peroxidase activities of prostaglandin H synthase.
        FEBS Lett. 1997; 410: 470-476
        • Messenger A.G.
        • Rundegren J.
        Minoxidil: mechanisms of action on hair growth.
        Br J Dermatol. 2004; 150: 186-194
        • Colombe L.
        • Vindrios A.
        • Michelet J.F.
        • et al.
        Prostaglandin metabolism in human hair follicle.
        Exp Dermatol. 2007; 16: 762-769
        • Colombe L.
        • Michelet J.F.
        • Bernard B.A.
        Prostanoid receptors in anagen human hair follicles.
        Exp Dermatol. 2008; 17: 63-72
        • Alestas T.
        • Ganceviciene R.
        • Fimmel S.
        • et al.
        Enzymes involved in the biosynthesis of leukotriene B4 and prostaglandin E2 are active in sebaceous glands.
        J Mol Med (Berl). 2006; 84: 75-87
        • Michelet J.F.
        • Commo S.
        • Billoni N.
        • et al.
        Activation of cytoprotective prostaglandin synthase-1 by minoxidil as a possible explanation for its hair growth-stimulating effect.
        J Invest Dermatol. 1997; 108: 205-209
        • Garza L.A.
        • Liu Y.
        • Yang Z.
        • et al.
        Prostaglandin D2 inhibits hair growth and is elevated in bald scalp of men with androgenetic alopecia.
        Sci Transl Med. 2012; 4: 126ra134
        • Nieves A.
        • Garza L.A.
        Does prostaglandin D2 hold the cure to male pattern baldness?.
        Exp Dermatol. 2014; 23: 224-227
        • Lachgar S.
        • Charveron M.
        • Bouhaddioui N.
        • et al.
        Inhibitory effects of bFGF, VEGF and minoxidil on collagen synthesis by cultured hair dermal papilla cells.
        Arch Dermatol Res. 1996; 288: 469-473
        • Barron-Hernandez Y.L.
        • Tosti A.
        Bimatoprost for the treatment of eyelash, eyebrow and scalp alopecia.
        Expert Opin Investig Drugs. 2017; 26: 515-522
        • Lachgar S.
        • Charveron M.
        • Gall Y.
        • et al.
        Minoxidil upregulates the expression of vascular endothelial growth factor in human hair dermal papilla cells.
        Br J Dermatol. 1998; 138: 407-411
        • Wester R.C.
        • Maibach H.I.
        • Guy R.H.
        • et al.
        Minoxidil stimulates cutaneous blood flow in human balding scalps: pharmacodynamics measured by laser Doppler velocimetry and photopulse plethysmography.
        J Invest Dermatol. 1984; 82: 515-517
        • Bunker C.B.
        • Dowd P.M.
        Alterations in scalp blood flow after the epicutaneous application of 3% minoxidil and 0.1% hexyl nicotinate in alopecia.
        Br J Dermatol. 1987; 117: 668-669
        • Zachary I.
        • Gliki G.
        Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family.
        Cardiovasc Res. 2001; 49: 568-581
        • Yano K.
        • Brown L.F.
        • Detmar M.
        Control of hair growth and follicle size by VEGF-mediated angiogenesis.
        J Clin Invest. 2001; 107: 409-417
        • Giordano S.
        • Romeo M.
        • di Summa P.
        • et al.
        A meta-analysis on evidence of platelet-rich plasma for androgenetic alopecia.
        Int J Trichology. 2018; 10: 1-10
        • Kwack M.H.
        • Sung Y.K.
        • Chung E.J.
        • et al.
        Dihydrotestosterone-inducible dickkopf 1 from balding dermal papilla cells causes apoptosis in follicular keratinocytes.
        J Invest Dermatol. 2008; 128: 262-269
        • Lu G.Q.
        • Wu Z.B.
        • Chu X.Y.
        • et al.
        An investigation of crosstalk between Wnt/beta-catenin and transforming growth factor-beta signaling in androgenetic alopecia.
        Medicine (Baltimore). 2016; 95: e4297
        • Inui S.
        • Fukuzato Y.
        • Nakajima T.
        • et al.
        Androgen-inducible TGF-beta1 from balding dermal papilla cells inhibits epithelial cell growth: a clue to understand paradoxical effects of androgen on human hair growth.
        FASEB J. 2002; 16: 1967-1969
        • Kitagawa T.
        • Matsuda K.
        • Inui S.
        • et al.
        Keratinocyte growth inhibition through the modification of Wnt signaling by androgen in balding dermal papilla cells.
        J Clin Endocrinol Metab. 2009; 94: 1288-1294
        • Kwack M.H.
        • Kim M.K.
        • Kim J.C.
        • et al.
        L-ascorbic acid 2-phosphate represses the dihydrotestosterone-induced dickkopf-1 expression in human balding dermal papilla cells.
        Exp Dermatol. 2010; 19: 1110-1112
        • Kwack M.H.
        • Ahn J.S.
        • Kim M.K.
        • et al.
        Preventable effect of L-threonate, an ascorbate metabolite, on androgen-driven balding via repression of dihydrotestosterone-induced dickkopf-1 expression in human hair dermal papilla cells.
        BMB Rep. 2010; 43: 688-692
        • Harman D.
        Aging: a theory based on free radical and radiation chemistry.
        J Gerontol. 1956; 11: 298-300
        • Arck P.C.
        • Overall R.
        • Spatz K.
        • et al.
        Towards a "free radical theory of graying": melanocyte apoptosis in the aging human hair follicle is an indicator of oxidative stress induced tissue damage.
        FASEB J. 2006; 20: 1567-1569
        • Kauser S.
        • Westgate G.E.
        • Green M.R.
        • et al.
        Human hair follicle and epidermal melanocytes exhibit striking differences in their aging profile which involves catalase.
        J Invest Dermatol. 2011; 131: 979-982
        • Huang W.Y.
        • Huang Y.C.
        • Huang K.S.
        • et al.
        Stress-induced premature senescence of dermal papilla cells compromises hair follicle epithelial-mesenchymal interaction.
        J Dermatol Sci. 2017; 86: 114-122
        • Trueb R.M.
        Pharmacologic interventions in aging hair.
        Clin Interv Aging. 2006; 1: 121-129
        • Goodier M.
        • Hordinsky M.
        Normal and aging hair biology and structure 'aging and hair'.
        Curr Probl Dermatol. 2015; 47: 1-9
        • Fernandez-Flores A.
        • Saeb-Lima M.
        • Cassarino D.S.
        Histopathology of aging of the hair follicle.
        J Cutan Pathol. 2019; 46: 508-519
        • Kligman A.M.
        The comparative histopathology of male-pattern baldness and senescent baldness.
        Clin Dermatol. 1988; 6: 108-118
        • Whiting D.A.
        How real is senescent alopecia? A histopathologic approach.
        Clin Dermatol. 2011; 29: 49-53
        • Sinclair R.
        • Chapman A.
        • Magee J.
        The lack of significant changes in scalp hair follicle density with advancing age.
        Br J Dermatol. 2005; 152: 646-649
        • Courtois M.
        • Loussouarn G.
        • Hourseau C.
        • et al.
        Ageing and hair cycles.
        Br J Dermatol. 1995; 132: 86-93
        • Karnik P.
        • Shah S.
        • Dvorkin-Wininger Y.
        • et al.
        Microarray analysis of androgenetic and senescent alopecia: comparison of gene expression shows two distinct profiles.
        J Dermatol Sci. 2013; 72: 183-186
        • Mirmirani P.
        Age-related hair changes in men: mechanisms and management of alopecia and graying.
        Maturitas. 2015; 80: 58-62
        • Trüeb R.M.
        Association between smoking and hair loss: another opportunity for health education against smoking?.
        Dermatology. 2003; 206: 189-191
        • Jadkauskaite L.
        • Coulombe P.A.
        • Schafer M.
        • et al.
        Oxidative stress management in the hair follicle: could targeting NRF2 counter age-related hair disorders and beyond?.
        Bioessays. 2017; 39: 1-9
        • Prasad S.
        • Sajja R.K.
        • Kaisar M.A.
        • et al.
        Role of Nrf2 and protective effects of Metformin against tobacco smoke-induced cerebrovascular toxicity.
        Redox Biol. 2017; 12: 58-69
        • Su L.H.
        • Chen T.H.
        Association of androgenetic alopecia with smoking and its prevalence among Asian men: a community-based survey.
        Arch Dermatol. 2007; 143: 1401-1406
        • Mosley J.G.
        • Gibbs A.C.
        Premature gray hair and hair loss among smokers: a new opportunity for health education?.
        Br Med J. 1996; 313: 1616
        • Salem A.S.
        • Ibrahim H.S.
        • Abdelaziz H.H.
        • et al.
        Implications of cigarette smoking on early-onset androgenetic alopecia: a cross-sectional Study.
        J Cosmet Dermatol. 2021; 20: 1318-1324
        • Yeo I.K.
        • Jang W.S.
        • Min P.K.
        • et al.
        An epidemiological study of androgenic alopecia in 3114 Korean patients.
        Clin Exp Dermatol. 2014; 39: 25-29
        • Fortes C.
        • Mastroeni S.
        • Mannooranparampil T.
        • et al.
        Mediterranean diet: fresh herbs and fresh vegetables decrease the risk of Androgenetic Alopecia in males.
        Arch Dermatol Res. 2018; 310: 71-76
        • Son K.H.
        • Suh B.S.
        • Jeong H.S.
        • et al.
        Relationship between working hours and probability to take alopecia medicine among Korean male workers: a 4-year follow-up study.
        Ann Occup Environ Med. 2019; 31: e12
        • Gatherwright J.
        • Liu M.T.
        • Amirlak B.
        • et al.
        The contribution of endogenous and exogenous factors to male alopecia: a study of identical twins.
        Plast Reconstr Surg. 2013; 131: 794e-801e
        • Severi G.
        • Sinclair R.
        • Hopper J.L.
        • et al.
        Androgenetic alopecia in men aged 40-69 years: prevalence and risk factors.
        Br J Dermatol. 2003; 149: 1207-1213
        • Fortes C.
        • Mastroeni S.
        • Mannooranparampil T.J.
        • et al.
        The combination of overweight and smoking increases the severity of androgenetic alopecia.
        Int J Dermatol. 2017; 56: 862-867
        • Lai C.H.
        • Chu N.F.
        • Chang C.W.
        • et al.
        Androgenic alopecia is associated with less dietary soy, lower [corrected] blood vanadium and rs1160312 1 polymorphism in Taiwanese communities.
        PLoS One. 2013; 8: e79789
        • Gupta S.
        • Goyal I.
        • Mahendra A.
        Quality of life assessment in patients with androgenetic alopecia.
        Int J Trichology. 2019; 11: 147-152
        • Salman K.E.
        • Altunay I.K.
        • Kucukunal N.A.
        • et al.
        Frequency, severity and related factors of androgenetic alopecia in dermatology outpatient clinic: hospital-based cross-sectional study in Turkey.
        An Bras Dermatol. 2017; 92: 35-40
      1. Predicting coronary artery disease.
        Br Med J. 1972; 4: 3
        • Trieu N.
        • Eslick G.D.
        Alopecia and its association with coronary heart disease and cardiovascular risk factors: a meta-analysis.
        Int J Cardiol. 2014; 176: 687-695
        • Kim M.W.
        • Shin I.S.
        • Yoon H.S.
        • et al.
        Lipid profile in patients with androgenetic alopecia: a meta-analysis.
        J Eur Acad Dermatol Venereol. 2017; 31: 942-951
        • Sharma K.
        • Humane D.
        • Shah K.
        • et al.
        Androgenic alopecia, premature graying, and hair thinning as independent predictors of coronary artery disease in young Asian males.
        Cardiovasc Endocrinol. 2017; 6: 152-158
        • Triantafyllidi H.
        • Grafakos A.
        • Ikonomidis I.
        • et al.
        Severity of alopecia predicts coronary changes and arterial stiffness in untreated hypertensive men.
        J Clin Hypertens (Greenwich). 2017; 19: 51-57
        • Banger H.S.
        • Malhotra S.K.
        • Singh S.
        • et al.
        Is early onset androgenic alopecia a marker of metabolic syndrome and carotid artery atherosclerosis in young Indian male patients?.
        Int J Trichology. 2015; 7: 141-147
        • Park S.Y.
        • Oh S.S.
        • Lee W.S.
        Relationship between androgenetic alopecia and cardiovascular risk factors according to BASP classification in Koreans.
        J Dermatol. 2016; 43: 1293-1300
        • Sharma K.H.
        • Jindal A.
        Association between androgenetic alopecia and coronary artery disease in young male patients.
        Int J Trichology. 2014; 6: 5-7
        • Ertas R.
        • Orscelik O.
        • Kartal D.
        • et al.
        Androgenetic alopecia as an indicator of metabolic syndrome and cardiovascular risk.
        Blood Press. 2016; 25: 141-148
        • Bakry O.A.
        • Shoeib M.A.
        • El Shafiee M.K.
        • et al.
        Androgenetic alopecia, metabolic syndrome, and insulin resistance: is there any association? A case-control study.
        Indian Dermatol Online J. 2014; 5: 276-281
        • Vora R.V.
        • Kota R.
        • Singhal R.R.
        • et al.
        Clinical profile of androgenic alopecia and its association with cardiovascular risk factors.
        Indian J Dermatol. 2019; 64: 19-22
        • Gopinath H.
        • Upadya G.M.
        Metabolic syndrome in androgenic alopecia.
        Indian J Dermatol Venereol Leprol. 2016; 82: 404-408
        • Swaroop M.R.
        • Kumar B.M.
        • Sathyanarayana B.D.
        • et al.
        The association of metabolic syndrome and insulin resistance in early-onset androgenetic alopecia in males: a case-control study.
        Indian J Dermatol. 2019; 64: 23-27
        • Danesh-Shakiba M.
        • Poorolajal J.
        • Alirezaei P.
        Androgenetic alopecia: relationship to anthropometric indices, blood pressure and life-style habits.
        Clin Cosmet Investig Dermatol. 2020; 13: 137-143
        • Abdel Fattah N.S.
        • Darwish Y.W.
        Androgenetic alopecia and insulin resistance: are they truly associated?.
        Int J Dermatol. 2011; 50: 417-422
        • Di Guardo F.
        • Ciotta L.
        • Monteleone M.
        • et al.
        Male equivalent polycystic ovarian syndrome: hormonal, metabolic, and clinical aspects.
        Int J Fertil Steril. 2020; 14: 79-83
        • Cannarella R.
        • Condorelli R.A.
        • Mongioi L.M.
        • et al.
        Does a male polycystic ovarian syndrome equivalent exist?.
        J Endocrinol Invest. 2018; 41: 49-57
        • Sanke S.
        • Chander R.
        • Jain A.
        • et al.
        A comparison of the hormonal profile of early androgenetic alopecia in men with the phenotypic equivalent of polycystic ovarian syndrome in women.
        JAMA Dermatol. 2016; 152: 986-991
        • Cannarella R.
        • Condorelli R.A.
        • Dall'Oglio F.
        • et al.
        Increased DHEAS and decreased total testosterone serum levels in a subset of men with early-onset androgenetic alopecia: does a male PCOS-equivalent exist?.
        Int J Endocrinol. 2020; 2020: 1942126
        • Cannarella R.
        • La Vignera S.
        • Condorelli R.A.
        • et al.
        Glycolipid and hormonal profiles in young men with early-onset androgenetic alopecia: a meta-analysis.
        Sci Rep. 2017; 7: 7801